Related Articles |
Beta A versus beta B: is it merely a matter of expression?
Mol Cell Endocrinol. 2004 Oct 15;225(1-2):9-17
Authors: Thompson TB, Cook RW, Chapman SC, Jardetzky TS, Woodruff TK
Activins are members of the transforming growth factor (TGF) beta (beta) superfamily of proteins that function in a wide array of physiological processes. Like other TGFbeta ligands, activins are biologically active as dimers. An activin molecule is comprised of two beta-subunits, of which four isoforms have been identified: betaA, betaB, betaC, and betaE. The most widely studied activins to date are activin A (betaA/betaA), activin B (betaB/betaB), and activin AB (betaA/betaB). Inhibin is a naturally occurring activin antagonist that consists of an alpha-subunit disulfide-linked to one of the activin beta-subunits, producing inhibin A (alpha/betaA), or inhibin B (alpha/betaB). The development of assays distinguishing between different forms of activins and inhibins, along with knock-in and knock-out models, have provided evidence that the betaA- and betaB-subunits have independent and separate roles physiologically. Additionally, evaluation of ligand-receptor interactions indicates significant differences in receptor affinity between activin isoforms, as well as between inhibin isoforms. In this review we explore the differences between activin/inhibin betaA- and betaB-subunits, including expression patterns, binding properties, and the specific structural aspects of each. From the growing pool of knowledge regarding activins and inhibins, the emerging data support the hypothesis that betaA- and betaB-subunits are functionally differently.
PMID: 15451562 [PubMed - indexed for MEDLINE]