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Dynamic Changes in Inhibin Messenger RNAs in Rat
Ovarian Follicles During the Reproductive Cycle
TERESA K. WOODRUFF, JOBETH D'AGOSTINO, NEENA B. SCHWARTZ,
KELLY E. MAYo

The alterations in morphology and function of the ovarian follicle as it matures,
ovulates, and becomes a corpus luteum are dramatic. A variety of steroid and
polypeptide hormones influence these processes, and the ovary in turn produces
specific hormonal signals for endocrine regulation. One such signal is inhibin, a

heterodimeric protein that suppresses the secretion of follide-stimulating hormone
from pituitary gonadotrophs. Rat inhibin complementaryDNA probes have been used
to examine the levels and distribution of inhibin a- and ISA-subunit messenger RNAs
in the ovaries of cycling animals. Striking, dynamic canges have been found in inhibin
messenger RNA accumulation during the developmental maturation of the ovarian
follicle.

T HE PROGRESSIVE GROWTH, OVUIA-

tion, and luteinization of ovarian fol-
licles are highly integrated processes

coordinated by regulatory signals including
steroid and peptide hormones from the
brain, anterior pituitary, adrenals, and ova-

ries. The two primary regulators of ovarian
function are the pituitary gonadotropins,
follicle-stimulating hormone (FSH) and lu-
teinizing hormone (LH) (1). FSH and LH
are usually secreted in tandem under the
influence of the hypothalamic peptide go-
nadotropin-releasing hormone (GnRH)
(2). However, normal physiological situa-
tions exist where the secretion of FSH and
LH are dissociable (3).

FSH secretion can be specifically sup-
pressed by the steroid-free portion of ovari-
an follicular fluid in many species (4, 5).
Follicular fluid can inhibit both the primary
and secondary FSH surges, as well as the rise

in serum FSH concentrations that follows
unilateral or bilateral ovariectomy (5, 6).
Purification of this activity, termed inhibin,
from follicular fluid resulted in the identi-

fication of a heterodimeric glycoprotein,
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composed of a (18-kD) and P (14-kD)
subunits, that suppresses the release ofFSH,
but not LH, from cultured pituitary cells
(7). Two related forms of the smaller P
subunit (PA and PB) have been identified,
and these subunits can form dimers that are
potent stimulators of FSH secretion (8).
Inhibin subunit complementary DNAs
(cDNAs) have recently been characterized
from several species, including rat (9, 10).
To clarify the role of inhibin in reproductive
processes, we have identified the points in
follicular maturation during which the inhi-
bin a and PA messenger RNAs (mRNAs)
are synthesized.

Ovaries were removed from four sets of
animals at times during the 4-day estrous
cycle that coincided with the preovulatory
LH and FSH surges (afternoon of proes-
trus), the secondary FSH surge (proestrus
to estrus), ovulation (early estrus), follicular
recruitment (early estrus), and luteinization
(estrus) (11-15). Total RNA isolated from
the ovaries was used for solution hybridiza-
tion to determine overall changes in inhibin
mRNA levels during the course of the re-
productive cycle. Serum FSH and LH were
also measured for each animal.
Both inhibin a- and PA-subunit mRNAs

were detected on all days of the estrous
cycle; the level of a mRNA steadily in-
creased during the early portion of the cycle
and peaked late in the afternoon ofproestrus
(Fig. 1A). Although the level of PA mRNA
was more variable between animals, it also
reached peak values at 1830 hours on proes-
trus (Fig. 1B). After the preovulatory surges
ofLH and FSH in late proestrus (Fig. 1C),
a marked decrease in expression of both
mRNAs was observed by 2400 hours proes-
trus. By the morning of estrus (0400 to
0700 hours), inhibin mRNA levels began to
increase from this nadir.
The ovary is a heterogeneous organ con-

sisting of follides in many different stages of
growth and atresia and of corpora lutea of
varying age. To obtain a more detailed and
dynamic picture of inhibin biosynthesis in
individual follicles, inhibin mRNAs were
localized histologically. Animals were killed
at the time points described, and one ovary
was used for in situ hybridization histo-
chemistry (Fig. 2) while serum was collected
for gonadotropin measurements. Probes to
the inhibin a and PA subunits hybridized
specifically to the mural granulosa cells of
healthy, maturing follicles. During metes-
trus (Fig. 2, A to C) and diestrus (Fig. 2, D
to F) both mRNAs were produced in low
levels, and serum LH (3.3 and 1.1 ng/ml,
respectively) and FSH (158 and 120 ng/ml,
respectively) were also low. By 1000 hours
on proestrus, Graafian follicles were formed,
and a dramatic increase in inhibin mRNA
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levels was observed (Fig. 2, G to I). Serum
LH (0.8 ng/ml) and FSH (122 ng/ml)
remained low at this time. At 1600 hours
proestrus, serum gonadotropin levels were
markedly elevated (LH, 52.8 ng/ml and
FSH, 373 ng/ml), and preovulatory follicles,
which were beginning to show disperse-
ment of cumulus cells in response to early
gonadotropin surge stimulation, continued
to hybridize intensely. A dramatic decrease
in hybridization to both a and PA probes
was detected on the evening of proestrus in
follicles displaying characteristics of com-
plete gonadotropin stimulation (Fig. 2, J to
L). In this animal, serum concentrations of
LH had returned to presurge values, while
serum FSH levels remained elevated (3.8
and 435 ng/ml, respectively). After ovula-
tion, hybridization to new corpora lutea
(1000 hours estrus, Fig. 2,M to 0) was not
detected, but inhibin mRNA levels began to
increase in newly recruited follides respond-
ing to the secondary FSH surge (12).

Previous studies have reported inhibin
mRNA production (9, 16) or protein local-
ization (17) in the corpus luteum, but our
results show that at the cellular level little or

no inhibin a- or PA-subunit mRNA is de-
tected in preantral follicles, oocytes, theca,
stroma, cumulus cells, or corpora lutea of
any age from cycling animals (Fig. 2).
Our measurements of inhibin mRNA lev-

els throughout the estrous cycle showed that
both a- and PA-subunit mRNAs were ex-
pressed in newly recruited follicles, in-
creased during the early portion of the rat
estrous cycle, presumably in response to
basal LH and FSH concentrations, and
reached peak levels on the day of proestrus.
The GnRH-driven preovulatory LH and
FSH surges that occur during the afternoon
of proestrus cause a resumption of oocyte
meiosis, suppression of estradiol secretion,
and increased progesterone secretion (14).
We found that these primary gonadotropin
surges preceded a dramatic decline in inhi-
bin mRNA levels, and, even though the
precise timing of this dedine in inhibin
mRNA levels during late proestrus was
somewhat variable, in all cases it coincided
with histological observation of complete
gonadotropin stimulation. We have recently
shown, by in situ hybridization, that in
animals treated at 1200 hours proestrus

Fig. 1.Inhibma-and A- 0 000° ° 8°
subunit mRNA levels and ° ° ° 8
serum gonadotropin levels 0+,,
during the rat estrous cyde.'
(A) Inhibin a-subunit _i X ,, cX
mRNA; (B) inhibin PA- A Z O J m d t C

*

t L!
subunit mRNA; (C) serum
LH and FSH levels. A solu-
tion hybridization-ribonu- a Probe (440)- *
clease (RNase) protection Protected (333):
assay was used to determine
inhibin mRNA levels (21).
Arrows indicate the size of
the input antisense RNA
probe, as well as the size of
the expected RNase-protect-
ed fragment based on the B
known cDNA sequences
(9). The triplet of bands A Probe (304)
seen in the upper part of B
are nonspecific and are seen , Protected (200)- 0 * #* *
in all lanes, induding the
control, which lacked RNA. C
Total RNA was prepared
from one ovary of each ani- 100 800
mal killed at the indicated E
times (22), and 20 ,ug of 600 m
total RNAwas usedin each 10 400
hybridization reaction. I 400
Antisense RNA probes were -J L* _
synthesized as described, _2000
with rat inhibin a- and PA-
subunit cDNAs used in the 0
vector pGEM3 (9, 21). So- _
lution hybridization was 2o it 0. LL
performed for 16 hours at 0 80 0 8 8
42°C, the samples were di- 8 o °o
gested with RNase A (40
,ug/ml) and Ti (2 pLg/ml) for 1 hour at 30°C, and analyzed on denaturing 6% polyacrylamide-urea gels
(21). Negative controls induded probe alone and total RNA from rat liver and brain. The positive
control was 1 Lg of polyadenylated RNA from the ovary of a gonadotropin-stimulated animal. The
same general pattern of changes in inhibin mRNA levels shown here was observed in three additional
experiments on independent sets of cycling rats. Hormone values were determined by radioim-
munoassay (23).
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with a GnRH antagonist, which blocks the
subsequent gonadotropin surges, inhibin
mRNA levels fail to dccrcasc by 2400 hours
proestrus (18).

Our findings on the modulation of inhi­
bin mRNA biosynthesis correlate with earli­
er physiological observations that inhibin
regulates FSH and is also inBucnced by the

gonadotropins (11). Direct gonadotropin
regulation ofinhibin mRNA levels and inhi­
bin production have been observed both in
the animal and in granulosa cell cultures (9,
19). The modulation of inhibin mRNAs
seen in this study is consistent with recent
findings dcrnonstrating that circulating inhi·
bin inaeascs throughout the metestrous,

diestrous, and early procstrous stages of the
rat estrous cycle, dc:crcascs during the eve­
ning of proestrus, and rebounds on the
morning of estrus (20).

The dramatic reduction in inhibin mRNA
levels seen between the afternoon of proes­
trus in the slightly stimulated follicles and
the evening of proestrus in follicles fully

fig. 2. In situ hybridization analysis of inhibin Qt­
and PA-subunit mRNAs in rat ovary. (Column 1)
Localization of Qt-subunit mRNA; (columns 2
and 3) localization of PA-subunit mRNA. Ph0to­
graphs in columns 1 and 2 are at a magnification
of x 100; the entire maturing follicles can be seen
and represent adjacent sections hybridized to ei­
ther inhibin-Qt or inhibin-PA probes. The ph0to­
graphs in column 3 are at a magnification of
xSOO; individual silver grains can be seen. (A to
C), 1000 hours metestrus; (D to F), 1000 hours
diestrUS; (0 to I) 1000 hours proesrrus; (J to L),
2400 hours proestrUS; (II to 0), 1000 hours
estrUS. Relevant structures in the Graafian follicle
(TIt, thecal cells; 00, oocyte; Cu, cumulus cells;
Gr, granulosa cells) are labeled in (H). The struc­
ture shown at 1000 hours estrUS is a fresh corpus
luteurn. Frozen ovaries were oriented with respect
to the attached oviduct, mounted, and sequential
20-1Joffi sections were cut on a Reichert 840
cryostat. Sections were mounted on microscope
slides pretreated by incubation in Denhardt's me­
dium and acetylation (24), and were fixed in a
mixture of ethanol and acetic acid (3: 1) at room
temperature for IS minutes. The slides were
hybridized to 32p_labeled antisense inhibin Qt- and
PA-subunit probes as previously described (9),
processed for autoradiography with Kodak NTB­
2 emulsion, exposed for 9 days at 4oc, and
developed. All sections were hybridized and pr0­
cessed simultaneously with a single preparation of
inhibin Qt- or PA-subunit probe. Approximatdy
100 sections from one ovary of each animal were
stained with hematoxylin and eosin and analyzed;
two complete sets of cycling animals were ana­
lyzed. Follicles were categorized according to size
class, degree of stimulation or atresia, and the
relative level of hybridization. Photography was
performed on a Nikon {)ptiphot microscope.
Control hybridizations to fiver sections, or to
ovaries by means of scnsc:-strand inhibin probes,
showed no detectable signal.
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stimulated by the preovulatory gonadotro-
pin surge suggests that the half-lives of the
inhibin mRNAs are likely to be very short.
This is consistent with inhibin production
being tightly regulated in response to tran-
sient conditions during the estrous cycle,
and suggests that the major site ofcontrol of
inhibin biosynthesis is at the level of tran-
scription. Our results indicate that one com-
ponent of this control is likely to be the
gonadotropin surges. Further elucidation of
the molecular mechanisms by which gonad-
otropins and other hormonal and develop-
mental cues modulate inhibin biosynthesis
promises to enhance our understanding of
the control of the mammalian reproductive
system.
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Alternative Mechanisms for Activation of
Human Immunodeficiency Virus Enhancer in T Cells

GARY J. NABEL,* STEPHEN A. RICE, DAVID M. KNIPE,
DAVID BALTiMORE

The expression of human immunodeficiency virus (HIV) after T cell activation is
regulated by NF-KB, an inducible DNA-binding protein that stimulates transcription.
Proteins encoded by a variety ofDNA viruses are also able to activate expression from
the HIV enhancer. To determine how this activation occurs, specific genes from herpes
simplex virus type 1 and adenovirus that activate HIV in T lymphoma cells have been
identified. The cis-acting regulatory sequences in the HIV enhancer that mediate their
effect have also been characterized. The relevant genes are those for ICPO-an
immediate-early product ofherpes simplex virus type 1-and the form ofElA encoded
by the 13S messenger RNA of adenovirus. Activation ofHIV by adenovirus ElA was
found to depend on the TATA box, whereas herpesvirus ICPO did not work through a
single defined cis-actng element. These findings suggest multiple pathways that can be
used to bypass normal cellular activation of HIV, and they raise the possibility that
infection by herpes simplex virus or adenovirus may directly contribute to the
activation of HIV in acquired immunodeficiency syndrome by mechanisms indepen-
dent of antigenic simulation in T cells.

E XPRESSION OF HUMAN IMMUNODE-
ficiency virus (HIV) increases after
activation of inducer T cells by phor-

bol esters and lectins (1, 2). This stimulation
is mediated by NF-KB (3), a factor that
regulates transcription and binds to the
twice-repeated 11-bp KB motif in the HIV
enhancer (Fig. 1). This 11-bp motif is also
found in the immunoglobulin light chain
enhancer (4). Mutations of nucleotides
within these sites that eliminate the binding
of NF-vB also abolish the increase in HIV
gene expression seen in activated T cells (3).
DNA from primate viruses induced HIV
expression when cotransfected into fibro-
blasts with a plasmid containing the HIV

enhancer linked to the chloramphenicol ace-
tyltransferase (CAT) gene (5-7), but the
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