Multiple follicle culture supports primary follicle growth through paracrine-acting signals.

Multiple follicle culture supports primary follicle growth through paracrine-acting signals.

Reproduction. 2012 Oct 29;

Authors: Hornick J, Duncan FE, Shea L, Woodruff TK

Abstract

In vitro follicle growth in alginate hydrogels is a unique and versatile method for studying ovarian and follicle biology that may also have implications for fertility preservation. Current culture systems support the development of isolated mouse follicles from the secondary stage onward. However, it has been a challenge to grow smaller follicles in vitro due to the dissociation of the oocyte from companion somatic cells. Recent work has demonstrated that co-culturing primary follicles with mouse embryonic fibroblasts or ovarian stromal cells supports follicle survival and growth. In this study, we demonstrate that follicles themselves can exert a beneficial co-culture effect. When primary follicles were cultured in groups of 5 or 10 (multiple follicle culture), there was increased growth and survival. The multiple follicle culture approach maintained follicle integrity and resulted in the formation of antral stage follicles containing meiotically-competent gametes. The growth and survival of primary follicles was highly number dependent, with the most significant enhancement observed when the largest number of follicles were grown together. Our data suggest that the follicle unit is necessary to produce the secreted factors responsible for the supportive effects of multiple follicle culture, as neither denuded oocytes, oocyte-secreted factors nor granulosa cells alone were sufficient to support early follicle growth in vitro. Therefore, there may be signaling from both the oocyte and the follicle that enhances growth but requires both components in a feedback mechanism. This work is consistent with current in vivo models for follicle growth and thus advances the movement to recapitulate the ovarian environment in vitro.
/>/>

PMID: 23108112 [PubMed - as supplied by publisher]